Sharing data by means of a Local Dynamic Map

Definition of LDM

Hans-Joachim Schade
Cooperative ITS

- A C-ITS is a subset of the overall ITS that communicates and shares data between ITS applications and between ITS Stations\(^1\) to give advice or take actions with the objective of improving safety, sustainability, efficiency and comfort beyond the scope of stand-alone ITS.

\(^1\) ITS Station defined in ETSI EN 302 665 and ISO 21217, e.g. units installed in vehicles, at the roadside, in traffic control/management centres, in service centres, or in hand helds.

- C-ITS is best described in terms of ITS services\(^2\) and ITS applications\(^2\) rather than the hardware or software used to instantiate them.

\(^2\) ITS services and ITS applications are defined in ISO 21217
Cooperative ITS

C-ITS have the following features:

- a common reference architecture
- the sharing of data between different ITS applications in any ITS station or in a single ITS station
 - this feature is provided by at least two standardized means:
 - publish / subscribe mechanism at the ITS-S facilities layer [CEN ISO TS 17429],
 real-time distribution of messages received by ITS-S application processes - no storage.
 - Local Dynamic Map [CEN ISO EN 18750], [ETSI EN 302 895],
 storage of LDM data objects for a given lifetime.
- the sharing of resources by applications in an ITS station
- the authorized use of information for purposes other than the original intent
- the support of multiple applications
Local Dynamic Map

0 LDM: conceptual data store which is embedded in an ITS station containing topographical, positional and status information within a dedicated geographic area of interest.

0 Two non-conflicting definitions of LDM are known:

- [CEN ISO EN 18750 Definition of a global concept for Local Dynamic Maps]
 - entity consisting of LDM data objects, services and interfaces for manipulating these LDM data objects
- [ETSI EN 302 895]
 - facilities layer data store for storing LDM Data Objects that are time-stamped and location referenced
A typical LDM consists of subsystems, e.g.

- LDM management
 - content synchronizing and updating in and between LDMs
- LDM Data Storage
- LDM Security
- LDM Content Integrity
 - maintaining data integrity and quality, and decision rules on conflicting data
- LDM SAPs/Data access
 - interface for writing elements into and retrieving elements from the data storage
Local Dynamic Map

Entries in an LDM are related to a real object and consist of:

- **Geo reference**
 (where is the object)

- **Time reference**
 (when exists the object)

- **Object type**
 (what is the object, e.g. a car, black-ice area, ...)

- **LDM Data Object** (information details, may be empty)

- **Optional quality measure of information**
 - raw / fused data
 - source is a trusted authority or not
 - expected lifetime, ...
LDM and digital road map

- An LDM may be considered to be an overlay of a digital road map, but it does not necessarily need to be combined with a digital road map.

- For visualization purposes, mapping on a road map is beneficial for a human user.

- For road-safety applications, mapping on a road map may be necessary to achieve the purpose, e.g. collision avoidance.

- The mapping of LDM Data Objects to a digital road map is not the task of the LDM, but has to be performed by the digital road map.
The meaning of "local" in LDM depends on the usage:

- collision avoidance: short distance around my car, mainly in driving direction, given by speed of a car.
- infrastructure purposes: area of significant size given by context, e.g. a street, a road network, a city, a region, ...

The meaning of "dynamic" in LDM depends on the usage:

- collision avoidance: lifetime of objects is given by speed of traffic. Updates may be necessary several times a second.
- infrastructure purposes: time span of significant size given by context, e.g. minutes, hours, days, weeks, ...

LDM implementations with quite different capabilities are needed:

- small memory and very low latency in queries
- big memory and almost no time constraints
Local Dynamic Map

Layer Relations:

- **Layer 4**
 - Highly dynamic data
 - CEN/TC278 and ISO/TC204, ETSI TC ITS

- **Layer 3**
 - Dynamic data
 - CEN/TC278 and ISO/TC204, ETSI TC ITS

- **Layer 1 and layer 2**
 - Static data and quasi-static data
 - ISO/TC204
Definition of LDM

Hans-Joachim Schade
Convenor CEN/TC278/WG16 Cooperative ITS
Convenor ISO/TC204/WG18 Cooperative ITS
Chair DIN/DKE GK 717 Telematik
TSE Consulting, Munich, Germany
hj.schade@tse-consult.com
+49 (160) 748 82 92